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The problem of designing a control u(t) which brings a system with two degreeo of freedom 

and a cyclic coordinate to a prescribed stable steady-state motion is considered. The pro- 

blem is solved for the case of small initial deviations of the system from the prescribed 

motion. 

1. Let us consider a controlled system with two degrees of freedom described by the 

Lagrange equation 

d aT 

( ) 

aT -- --= 
dt aqi’ ‘qi 

- 2 + biu 
i 

(i = 1, 2) (1.1) 

Here the qi are the generalized coordinates, T(q,q’l ia the kinetic energy, II(q) is the 

potential energy, and bi(q,q’) are functions determining the direction of the external con- 

trol. The functions T, a, and bi are assumed to be analytic. We shall take the coordinate 

qr in system (1.1) to be cyclic (11, p. 344). 

Selecting the quantitiea q,, q;, and p1 = d T/a q,’ as the fundamental variables, we 

write Equation (1.1) in the form 

f rq;, ql’, ql, p21 = b, (ql, ql’, ~2) u, dp, / dt = b, (qu ql’* PZ) u (1.2) 

For u(r)-= 0 let the steady-state motion of system (1.2) be stable in the linear approx- 

imation 

q1 = qlo = const, q; = 0, p2 = pzo = const 
(1.3) 

The problem is to choose the control u(rJ which will bring system (1.2) to the pres- 

cribed motion (1.3). The initial deviations &t(O), &J : (0). and ApI (0) from the prescribed 
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motion (1.3) are assumed to be small. 

2. Let us first consider the problem in the linear approximation. We shall assume that 

the characteristic equation of the first approximation of system (1.2) around the point (1.3) 

(when II s 0) has, apart from a zero root corresponding to the integral of pr = const, two 

pure imaginary roots f iK (the case when this equation has three zero roots is unusual and 

wiIl not be considered here). 

Putting Aql = x1, Al/,’ / x = x2, and bp, = Xs and changing the time scale 

to r = it, we reduce the equations of the first approximation of system (1.2) to the form 

(2.1) 

The following control problem is studied for system (2.1). 

Problem 2.1. Find the control u’(t) which takes system (2.1) from the state xi (0) = xi0 

to the state lCi(r”) = 0 (i = 1, 2, 3) subject to the condition 

maxa (1 u (‘@>I when 0 < 6 <x0> = minu (2.2) 

In order to simplify the calculations we choose the control time r” to be multiple of 

the period 27~ of the natural oscillations of system (2.1), i.e., P = k*27r, where k is an 

integer. 

Problem 2.1 is an optimal control problem. It can be solved by any one of the well- 

known methods in the theory of optimal processes. The aim of the present paper is to ex- 

amine the solution which is based on the arguments proposed for a similar problem in [2]. 

We shall take is that system (2,l) is completely controllable [3] since in this case we 

can solve both the linear Problem 2.1 of control [2,3] under any flu and the original non- 

linear problem [4] for all small initial deviations Aql, Aq,‘, &pZ. For system (2.1) to be 

completely controllable it is necessary and sufficient [3] that the vectors 

be linearly independent. This condition is satisfied if and only if & f 0 and (y f 0 or 

&# 0 1, which we shall as,sume. 

3. To solve Problem 2.1 by the procedure described in [2] we should set up the funda- 

mental matrix F(t) of the homogeneous system (2.1) and find 

a = max (i Zicij 
I=1 

for 

(3.1) 
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Let a0 and ZP be the solutions of problem (3.1) -(3.2). Then, the optimal control u” (I), 

which solves Problem 2.1 is determined by the equality 

U” (t) = a0 Sigll (i li”hi (t)) 
i=l 

(3.3) 

In the given case the matrix F ft) has the form 

cos t sin t y (1 - cos t) 

F (t) = - sin t cos t r sin t 

0 0 1 

Therefore, by the nonsingular linear substitution 

k 1= - BlZl_ BnrZa9 ha = - B,rh+ Bl4, A, = l&r4 4- PI& 

problem (3.11-(3.2) is transformed to the problem 

with 
TO 

s 1 hl sin 6 + Xa cos 6 + X, 1 di3 = 1 

0 

(3.41 

(3.5) 

(3.6) 

where 

The transformation <Zi) *-, {At} is nonsingular as a consequence of the complete con- 

trollability of aystem (2.11. Indeed, otherwise it would be possible to find a nonzero Zi for 

which the integrand in (3.2) would be identically zero. This is impossible in the case of 

complete controllability 12, 31. 

Thus, to determine the optimal control u”(t) in (3.3) we ehould.solve problem (3.5)-(3.6). 
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Problem (3.5) -(3.6) is solved by well-known methoda of differential calculus. To do this 

it is nsceasary to write the eqoation of the eorface (3.6) in the (Ai] (i = 1, 2, 3) in explicit 

form. Equation (3.6) corresponds to a surface of rotation around the &,-axis. It is symmetric 

with respect to the plane A, = 0. Therefore, it is sufficient to find the cross-section of this 

anrface by the plane & = 0 in the first quadrant (Fig. 1). 

2s 1, sin b+R, 

#we---. 
/ 

I/ 
1 
\ I! 
\ 

If A, 
. cm-----@ //c; 

FIG. 1. FIG. 2. 

By geometric reasoning it follows that on the ewe under consideration (Figs. 1,2) 

Therefore, in the spherical coordinates p, 8, 4, the surface (3.6) is described by the 

equations 

1 
p = 2ka-t cos 8 

when 0<8<$ (3.7) 

1 
‘= 4k(J’-i- when 

al 
- 4 8 + arc sin COt e-cot e) sin 8 4 Ge6f (3.8) 

After constmcting the curves (3.7) and (3.8), problem (3.5)-(3.6) is easily solved 

graphically. The equation 

i I&+ = B (- =<B<3-m) (3.9) 
i=l 

deacribem a family of parallel planes in the {X,1. Therefore, the numbers Ai which solve 

problem (3.5)-(3.6) are determined as the coordinsterr of the point (hi01 where the plane in 

(3.9) for /!f = a0 > 0 is tangent to the snrface (3.6). This point is conveniently found by con- 

aidering the cnrves (3.7) and (3.8) in the plane (Fig. 3) which is perpendicular to the lines 

of fntermection of the planea (3.9) and X, = 0. 
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The only exceptional case is when ot* 2 ~a* = 0. 

In this case we have &to)’ j- &a’)’ 6 (q)s, and the 

optimal control so(t) in (3.3) maintains a constant sign 

for all 8 in [0, r”]. WC shall not consider this case here. 

Let us assume that the initial deviations xi0 satisfy the 

condition (ot*)c -I- (~,*)a > 0. Then, the gcomctric rea- 

* soning described above determines in a unique manner 

the values of v which lie in the region 

A,= + &S= > klz (3.10) 

Here the optimal (3.3) is bang-bang. In the ncigh- 

FIG. 3. bourhood of any point {xi] from region (3.10) both the 

principal curvatures of surface (3.6) arc positive. This 

is verified, for example, by starting with Equations (3.7) and (3.8). Hence it follows that 

small changes Axi, in the quantities xi,,, or small changes Aci* in ths coefficients ct of 

the planes (3.9). give rise to small changes &u in the quantities hi’. Here, for every pair 

of numbers C? > 0 and E > 0 we can find a number N such that 

) Ali’ I < N II AC* II (i = 1, 2, 3) (3.11) 

if we consider only those values of ci* lying in the region 

(CIY” + (ce*)a > 6, II c* II G fJ (3.12) 

(the symbol 11911 d cnotes the euclidean norm of the vector q). Relying on this fact WC arrive 

at the following conclusion. 

Theorem 3.1. The optimal control uO(t) which solves Problem 2.1 has the form 

u” (t) = a0 (5’) sign (A,” sin t + A,’ co9 t + IL,“) (3.13) 

Here U”(ro) and {xi0 1 arc the solutions of problem (3.5) -(3.6) and, morcovcr, the sur- 

face (3.6) is determined by equations (3.7) and (3.8). The estimate 

is valid. 

Small change &xi, in the quantities ri o give rise to changes ho(t) in the optimal con- 

trol which are small on the average. Under conditions (3.11) and (3.12) the estimates 

I Aa” I < hII AC* IL I Au” (t) I < &II AC* I/ (3.15) 

are valid for all t except for a set Q of values of t whose measure cc(Q) satisfies the in- 

equality 

P (Q) < %llAc*lI (Ni (i = 1,. . . , 4), are constants) (3.16) 
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Remark 3.1. The exclusion of the case (,r* ~-- 0, cs* ~: 0 does not raise any serious 

problems. However, a consideration of this case requires a subsidiary investigation of the 

nature of the smoothness of the surfaces (3.7) and (3.8) at the point 8 = 7r/4, which is out- 

side the scope of the present paper. 

4. Let us now consider the question of control in the nonlinear system (1.2). Taking as 

a start the control u”(t) in (3.3) f ound in the linear approximation for Problem 2.1, we can 

construct an iterative process for the determination of a certain control u”(t) which solves 

the nonlinear problem. Here, the nonlinear terms of all the higher orders are taken into ac- 

count at each step. 

Let us describe the first step of the iterative process after the solution of Problem 2.1. 

Let us denote the control uO(t) from (3.3). which solves Problem 2.1 subject to some initial 

condition 5” = {zto, x2,,, Tao}, by the symbol uf,l” (t, CC”). If in equation (1.2) we 

take into account terms of the second order of smallness in Aql, Aq,‘, Apz and u, then, 

.in the variables xi(t), we obtain the system 

da da 
dt = x2, dt = - r,+ Tza+ g,u+ fr(2) (5, U), ds = /32U + f2(2) (z, U) (4.1) 

Here the functions f1c2) (r, U) and fzf2) (5, U) are second-order forms in their argu- 

ments; In equation (4.1) let us substitute the valoe of the control u = ZA~~JO (t, SO). This 

control (3.13) satisfies estimate (3.14) and, consequently, also the estimate 

In the linear approximation (2.1) the control ufljo (t, z’) transfers system (4.1) to 

the equilibrium state x (r’) = 0 and, in addition, as a consequence of estimate (4.2) the 

motion x (t, A,, ty, of system (2.1) satisfies the inequality 

II 2 (G 332.1) (1 < N, Ij 39 11 we = const) (4.3) 

Hence, frbm the well-known properties of ordinary differential equations [S] we con- 

clude that when u = u(,)' (t, 5') the motion t (t, z”)f,.,j of system (4.1) is led to the 

state 

Qz (zO, X0),4.1) = Y(l), II YYl < N, II L-49 II2 (4.4) 

With an accuracy upto terms of the third order of smallness in z” the vector r(l) is 

50 

y(l) = s F (TO - 6) f(2) (6) a16 
0 (4.5) 

f(Z) (0) = (0, f1(2) (IL: (6, X0)(2.,), U~l)o (+, SO)), fef2) (5 (6, 5°h2.1)Jh)o (67 so))) 

Here the function F(t) is the fundamental matrix of system (2.1). In order to consider 
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and correct the magnitude of the error 2 (To, ~‘)(a.l) = y(l) (4.4) and (4.5). let us con- 

sider anew the control of Problem 2.1 in the linear approximation but now not to the point 

r(rO) = 0 but to the point z (z’) = - 9 (l). This problem again reduces to problem (3.1) - 

(3.2) where the vector c is now defined by the equality c = - F (z”) 2’ - y(l). A 

change AC in the vector c causes a corresponding change AC* of the very same order in 

the vector C* of problem (3.5)-(3.6). Let u~~J“ (t, x0) be the control which is obtained 

corresponding to equality (3.3) for problem (3.5) -f3.6) altered in the manner described. 

From Theorem 3.1 it follows that the change AU” = U(s)’ (t, Z”) - U(1)’ (t, 5’) in the 

control u’(t) will on the average be of the second order of smallness in x0. 

Namely, the estimate 

1 Au” (t) 1 < N, I( y(l) (1 = N,Ns 11 5’ I/” (4.6) 

will be valid for all values of t with the exception of a set Qf”(rO) of values of t whose 

measure p (Q”‘) satisfies the inequality 

P (Q(l) (so)> =G NdJ y(l) II = N7NBIJ 5’ Ii2 (4.7) 

and, in addition, 

I U(2)O (4 e I < ‘V,o b0 II (N,, . . ., NlO = const) (4.8) 

The control u(n)’ (t, 3;‘) can be chosen as the second approximation for the solution 

of the original nonlinear control problem. By such a choice of control and from estimates 

(4.6) -(4.8) it followtihat the control u t2jo (t, 5’) transfers system (4.1). and also the 

system (~3, to the state 5 (to, z”) = y(s), where the vector y(‘) is of the third order 

of smallness in I\ x”n. With the help of vector y (2) we can construct a new approximation 

~ts,O (1, x0), in the same way as the approximation uf2b0 (t, CC“) was constructed from 

the vector y(r) in (4.51, etc. The estimates mentioned in Theorem 3.1 ensure, at every step, 

an increase in the order of the vector y (k) and, by the same token, give an estimate of the 

convergence of the iteration process. 

5. Let us consider an example. Suppose we are given a mathematical pendulum 

(Fig. 4) whose horizontal axis of suspension jO,,O,] rotates around the vertical axis lox,]. 

This rotation is controlled by a moment u(t). The problem is to bring the system to 

the steady-state motion o = 00, 8 = 80, where ~0 is the prescribed angular velocity of 

rotation around the axis {0x20]. The initial angular velocity o(O) and the initial magnitudes 

of 8(O) and 8 ‘(0) are assumed to be close to the prescribed values wu, es, and 86 = 0. 

In the spherical coordinates p = ro = const. 8, and I$ we have 

s T = V8mr$ ([W]S + sin2 8 [cp’]r) (5.1) 

II* - mrog cos 0 (5.2) 
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The coordinate 4 is cyclic and equation (1.2) has the form 

8” - 
pa cos 8 

mZrd si** 8 + g and = O’ 

p’ = ZA (p = mro2 sin2 0 cp’) 

In the prescribed steady-state motion 

(5.3) 

p = mroso, sin’ f&, 

cos 8, = g I og%), (g < 6-G%) (5.4) 

Let us set up the equations of perturbed motion for system 

(5.3) in the neighborhood of motion (5.4). We get 

2% 
A8” + A&Q (i + 3 cos’ 0,) - mu cot ‘& + v (Ati, BP) = 0, AP’ = u (5.5) 

Hers, the expansion of the quantity v (A.8, Ap) in powers of !18 and ,$J begins with the 

second-order terms 

v (A& Ap) = - S/z~oa (3 -t COSa 6,) cot 8&Ia+ 

+ 
ho (i + co9 e,) 

A8Ap - 
cos e. 

mroa sin’ &J m%f sina 8, 
App + . . . 

Ry setting 

21 = A.8, xa= Aev0, Vi+3cosae0, xQ= ~~ 

and by changing the time scale to 

tiO Vi + 3 ~0~2 e,t = 7, 

we reduce the linear part of system (5.5) to the form of (2.1) 

dxl dx, 
z = - x1 + Txs* 

dxs -zz 
d% x2* 

-= 
dz p” 

(5.6) 

(7 = 2 cos 8, / mrOaOO (1 + 3 ~09 e,) sin e,, p = 1 /o. f/1 + 3cosa0,) 

The quantities p and y are nonrero. Consequently, system (5.6) is completely controllable 

and the problem has a solution. The zDin which it is required to effect the control is taken 

equal to one period of the natural oscillations of system (5.6). i.e., T” = 277. (In the original 

time scale of t. the control time is 
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to = 2-c / 00 v/1+ 3 co3 8, .) 

g = 10 m/set, m = 1 kg, ra = 0.4 m, o0 = 10 set-t, 

80 = 1.3.8 rad, 19; = 0, o(O) = 8 secD1, 8(O) = 1.518 rad, 

8’(O) = 0. 

Then, in system (5.6) we have y = 0.272, p = 0.093, the fundamental matrix of the 

homogeneous system has the form (3.4). the initial conditions arc x1,, = 0.200, xzo = 0, 

and x3,, = -0.224, the vector c = (-xte, -x2,,, -xJ,,) = (-0.200,0,0.224). and the plane 

(3.9) is defined by the vector c* = {- ca / f37, (yea - CJ / fly, ca / f3}= (0, 10.455, 2.426). 

After finding the values of AF graphically, the control (3.13) which solves the linear 

problem (5.6) has the form 

~(1)~ (t, z’) = 2.672 sign (0.244 cos t + 0.054) (5.7) 

The control (5.7) is a relay function changing sign when tI = 1.795 sec. and 

t, = 4.488 sec. The control u (uo (t, zO) in (5.7) transfers system (5.6) to the point x(2n)rO 

in the time r” = 2n along a trajectory described by the equations 

t 

zl (r, zoo) = - 0.061 + 0.261 cos t+ i O.O25u$ (6, z’) (i - cos (: - 4)) de 
0 

t 

x2 (t, I’) = - 0.261 sin t + 
s 

0.025~(~)’ (6, r’) sin (t - 6) & 

0 

r3 (t, r’) = - 0.224 + i 0.093u(1jo (e, 2”) & 

0 (5.8) 

Taking into account the second-order terms 

f(2) (z, u) = (0, a~$ + bxtz, + czga, 0) (a = 0.999, b = - 1.263, c = 0.091) 

system (5.5) is brought to the state $1) = {- 0.058, 0.026, 0}, as determined by equa- 

tion (4.5). Solving the problem of bringing the system (5.6) to the point -y tl) we find 

cbj = {- 0.142, -0.026, 0.224), c(~)+ = (1.027, 8.140, 2.436) 

The control IL(~~’ (t, 2”) eqpals 

uC2)0 (t, x0) = 2.136 sign (0.030 sin t -I- 0.234 coa t + 0.0&?2) (5.9) 

With due regard to second-order terms, the control (5.9) transfers the system to the 

point 1-0.007,0.006,0) 1 a ong a trajectory computable by (5.8) where fnatead of y 

we must substitute u CIIo (8, r’) in accordance with (5.9). 

,,,VW) 
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